Choice Overload and Height Ranking of Menus in Partially-Ordered Sets
نویسندگان
چکیده
When agents face incomplete information and their knowledge about the objects of choice is vague and imprecise, they tend to consider fewer choices and to process a smaller portion of the available information regarding their choices. This phenomenon is well-known as choice overload and is strictly related to the existence of a considerable amount of option-pairs that are not easily comparable. Thus, we use a finite partially-ordered set (poset) to model the subset of easily-comparable pairs within a set of options/items. The height ranking, a new ranking rule for menus, namely subposets of a finite poset, is then introduced and characterized. The height ranking rule ranks subsets of options in terms of the size of the longest chain that they include and is therefore meant to assess menus of available options in terms of the maximum number of distinct and easily-comparable alternative options that they offer.
منابع مشابه
Sampling of Multiple Variables Based on Partially Ordered Set Theory
We introduce a new method for ranked set sampling with multiple criteria. The method relaxes the restriction of selecting just one individual variable from each ranked set. Under the new method for ranking, units are ranked in sets based on linear extensions in partially order set theory with considering all variables simultaneously. Results willbe evaluated by a relatively extensive simulation...
متن کاملTripled partially ordered sets
In this paper, we introduce tripled partially ordered sets and monotone functions on tripled partiallyordered sets. Some basic properties on these new dened sets are studied and some examples forclarifying are given.
متن کاملFixed point theorems for $alpha$-$psi$-contractive mappings in partially ordered sets and application to ordinary differential equations
In this paper, we introduce $alpha$-$psi$-contractive mapping in partially ordered sets and construct fixed point theorems to solve a first-order ordinary differential equation by existence of its lower solution.
متن کاملInterval fractional integrodifferential equations without singular kernel by fixed point in partially ordered sets
This work is devoted to the study of global solution for initial value problem of interval fractional integrodifferential equations involving Caputo-Fabrizio fractional derivative without singular kernel admitting only the existence of a lower solution or an upper solution. Our method is based on fixed point in partially ordered sets. In this study, we guaranty the existence of special kind of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Entropy
دوره 17 شماره
صفحات -
تاریخ انتشار 2015